Week 10 - Friday

COMP 2100

Last time

- What did we talk about last time?
- Matching practice
- Stable marriage
- Euler paths and cycles

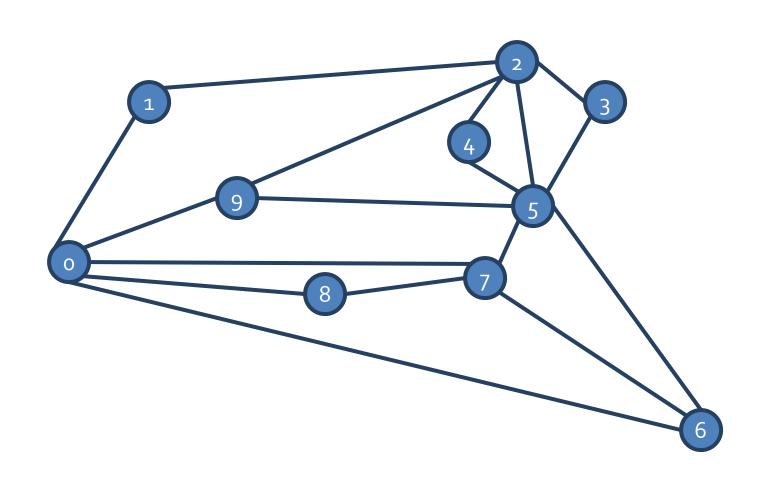
Questions?

Project 3

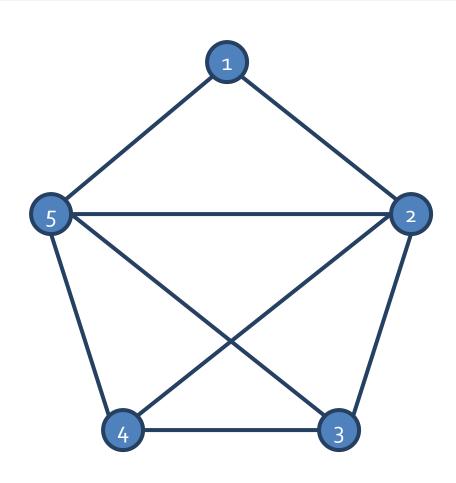
Assignment 5

Euler Practice

Is there an Euler path or cycle?



Is there an Euler path or cycle?



Network Flow

Flow networks

- A flow network is a weighted, directed graph with positive edge weights
 - Think of the weights as capacities, representing the maximum units that can flow across an edge
- An st-flow network has a source s (where everything comes from) and a sink t (where everything goes to)

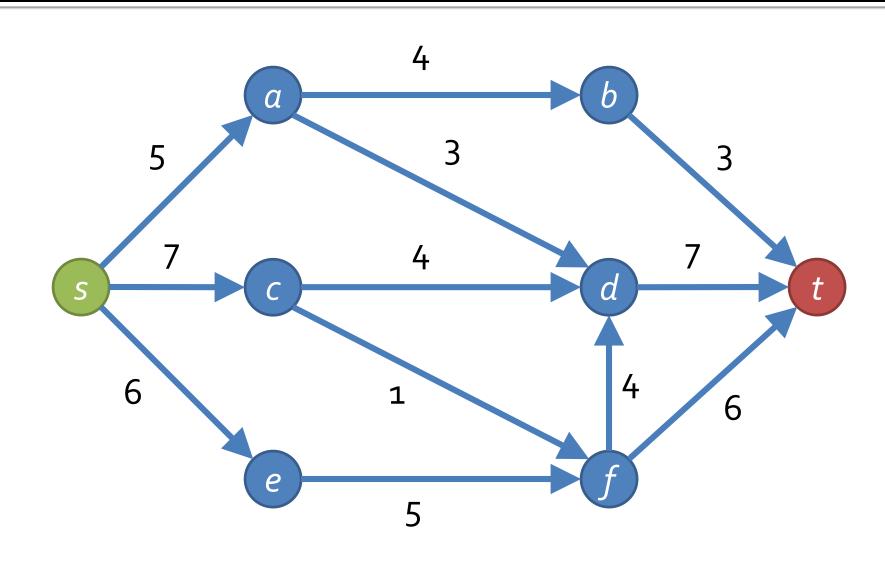
Applications of flow problems

- Oil flowing from a start to a destination
- Airline crews needed to man aircraft, moving from city to city
- Goods being produced by factories and consumed by cities,
 with roads that can accommodate a certain amount of traffic

Maximum flow

- A common flow problem is to find the maximum flow
- A maximum flow is a non-negative amount of flow on each edge such that:
 - The maximum amount of flow gets from s to t
 - No edge has more flow than its capacity
 - The flow going into every node (except s and t) is equal to the flow going out

Flow network



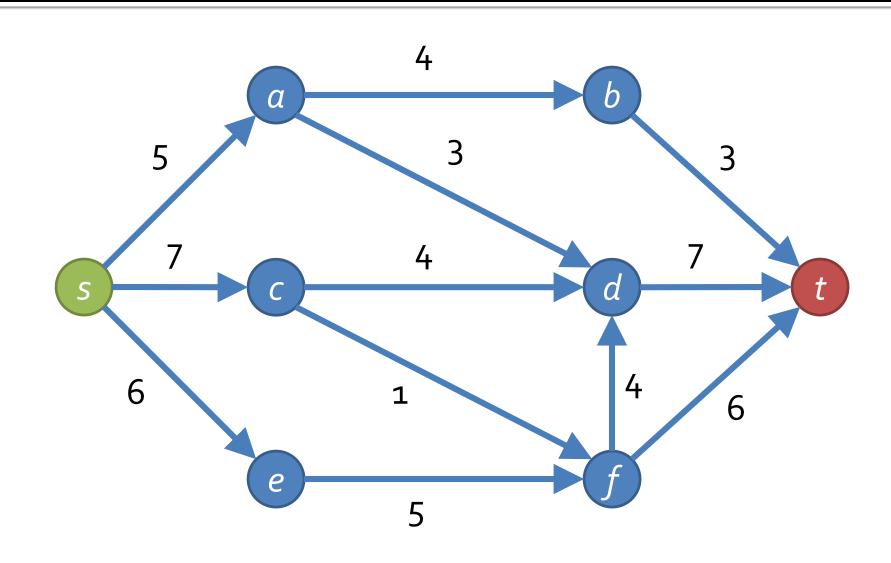
Augmenting path

- When we were talking about matching, we mentioned augmenting paths
- Augmenting paths in flows are a little different
- A flow augmenting path:
 - Starts at s and ends at t
 - May cross some edges in the direction of the edge (forward edges)
 - May cross some edges in the opposite direction (backwards edges)
 - Increases the flow by the minimum of the unused capacity in the forward edges or the maximum of the flow in the backwards edges

Ford-Fulkerson algorithm

- Ford-Fulkerson is a family of algorithms for finding the maximum flow
- 1. Start with zero flow on all edges
- 2. Find an augmenting path (increasing flow on forward edges and decreasing flow on backwards edges)
- 3. If you can still find an augmenting path, go back to Step 2

Find a max flow



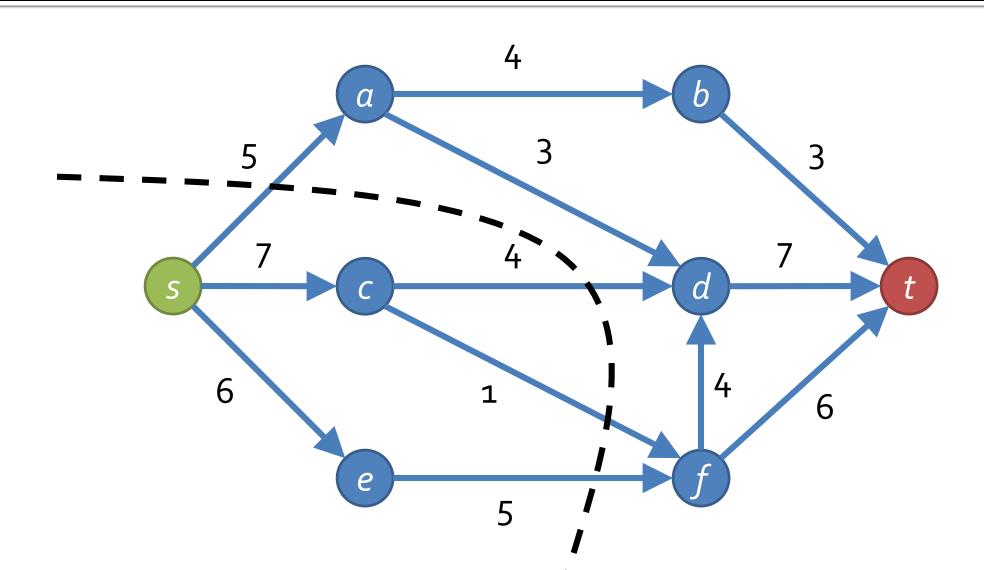
Cuts

- A cut in a graph partitions the graph into two disjoint sets
- An st-cut is a cut such that s is in one partition and t is in the other
- Think of it as a line that slices through the edges, putting s on one side and t on the other
- The capacity of a cut is the sum of the capacities of the edges that the cut divides

Maxflow-mincut theorem

- The smallest capacity st-cut you can make has the same capacity as the largest possible st-flow
- Intuitively, it's like that cut is a set of edges that most constricts the flow from s to t

Minimum st-cut



Running time of Ford-Fulkerson

- Our definition of Ford-Fulkerson didn't say how you pick the augmenting path
- At worst, it could take O(|E|f), where |E| is the number of edges in the graph and f is the maximum flow
 - That could be terrible if \boldsymbol{f} has a large numerical value
- Edmonds-Karp is a variation of Ford-Fulkerson that uses a breadth-first search to find a shortest augmenting path
 - It runs in O(|**V**||**E**|²)

B-trees

Multiway trees

- Binary trees are great
- However, only two splits means that you have a height of log_2 n when you want to store n things
 - If $n = 1,000,000, \log_2 n = 20$
- What if depth was expensive? Could we have say, 10 splits?
 - If $n = 1,000,000, \log_{10} n = 6$

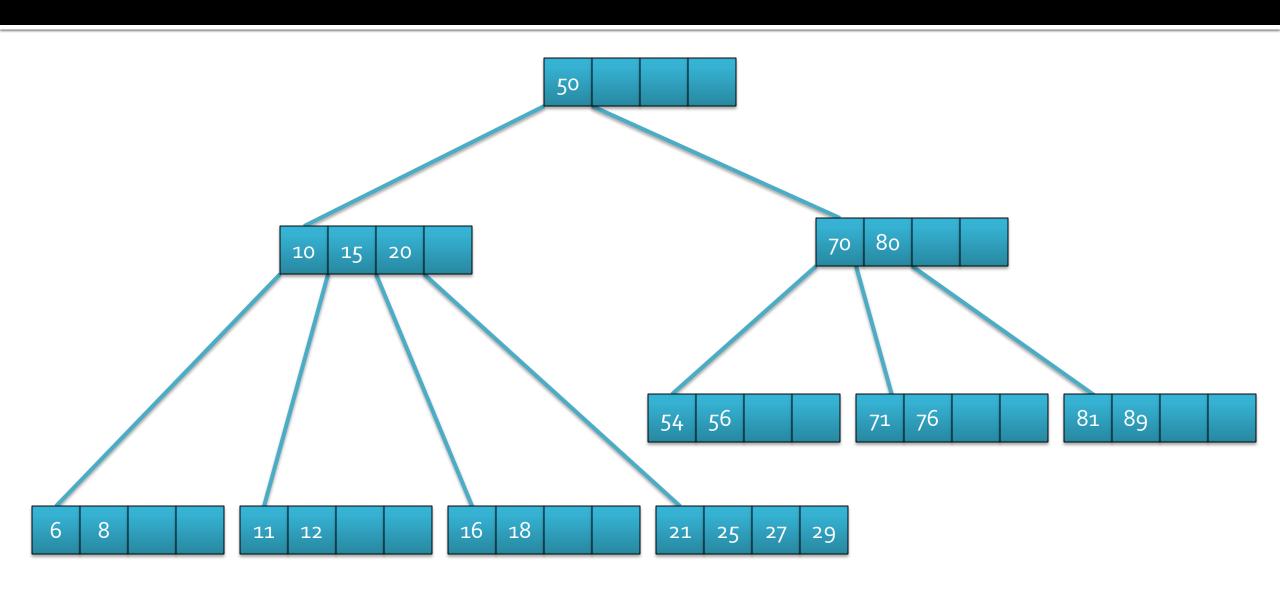
When would we need such a thing?

- Answer: When the tree is in secondary storage
- Each read of a block from disk storage is slow
 - We want to get a whole node at once
 - Each node will give us information about lots of child nodes
 - We don't have to make many decisions to get to the node we want

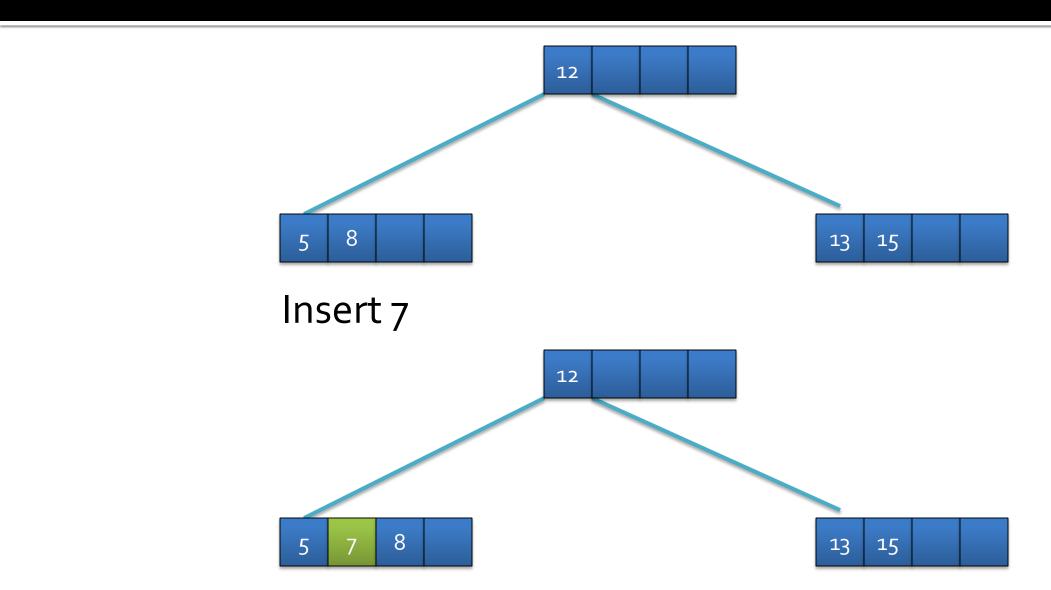
B-tree definition

- A B-tree of order m has the following properties:
 - 1. The root has at least two subtrees unless it is a leaf
 - 2. Each nonroot and each nonleaf node holds k keys and k+1 pointers to subtrees where $m/2 \le k \le m$
 - 3. Each leaf node holds k keys where $m/2 \le k \le m$
 - 4. All leaves are on the same level

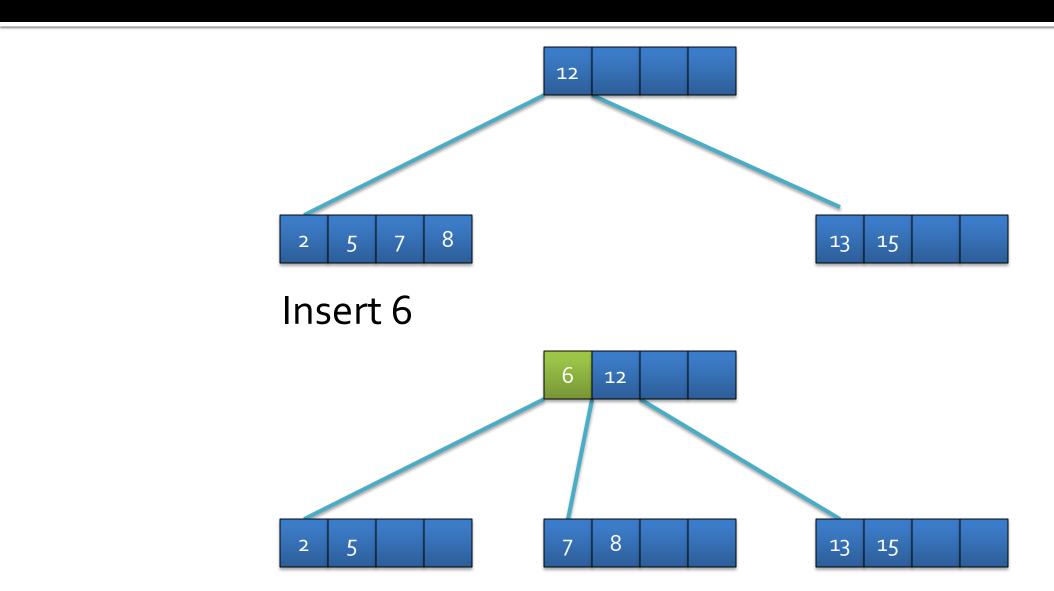
B-tree of order 4



Easy add



Tougher add



B-tree practice

- Insert the following numbers:
 - 86 69 81 15 100 94 8 27 56 68 92 89 38 53 88

Upcoming

Next time...

- Finish B-trees
- Intractability

Reminders

- Keep working on Project 3
 - Due next Friday!
- Finish Assignment 5
 - Due tonight by midnight!
- Read section 6.4